Criterion for the convergence of a series
In mathematics , the ratio test is a test (or "criterion") for the convergence of a series
∑
n
=
1
∞
a
n
,
{\displaystyle \sum _{n=1}^{\infty }a_{n},}
where each term is a real or complex number and an is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test .[ 1]
Decision diagram for the ratio test
The usual form of the test makes use of the limit
L
=
lim
n
→
∞
|
a
n
+
1
a
n
|
.
{\displaystyle L=\lim _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|.}
1
The ratio test states that:
if L < 1 then the series converges absolutely ;
if L > 1 then the series diverges ;
if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.
It is possible to make the ratio test applicable to certain cases where the limit L fails to exist, if limit superior and limit inferior are used. The test criteria can also be refined so that the test is sometimes conclusive even when L = 1. More specifically, let
R
=
lim
sup
|
a
n
+
1
a
n
|
{\displaystyle R=\lim \sup \left|{\frac {a_{n+1}}{a_{n}}}\right|}
r
=
lim
inf
|
a
n
+
1
a
n
|
{\displaystyle r=\lim \inf \left|{\frac {a_{n+1}}{a_{n}}}\right|}
.
Then the ratio test states that:[ 2] [ 3]
if R < 1, the series converges absolutely;
if r > 1, the series diverges; or equivalently if
|
a
n
+
1
a
n
|
>
1
{\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|>1}
for all large n (regardless of the value of r ), the series also diverges; this is because
|
a
n
|
{\displaystyle |a_{n}|}
is nonzero and increasing and hence an does not approach zero;
the test is otherwise inconclusive.
If the limit L in (1 ) exists, we must have L = R = r . So the original ratio test is a weaker version of the refined one.
Convergent because L < 1[ edit ]
Consider the series
∑
n
=
1
∞
n
e
n
{\displaystyle \sum _{n=1}^{\infty }{\frac {n}{e^{n}}}}
Applying the ratio test, one computes the limit
L
=
lim
n
→
∞
|
a
n
+
1
a
n
|
=
lim
n
→
∞
|
n
+
1
e
n
+
1
n
e
n
|
=
1
e
<
1.
{\displaystyle L=\lim _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|=\lim _{n\to \infty }\left|{\frac {\frac {n+1}{e^{n+1}}}{\frac {n}{e^{n}}}}\right|={\frac {1}{e}}<1.}
Since this limit is less than 1, the series converges.
Divergent because L > 1[ edit ]
Consider the series
∑
n
=
1
∞
e
n
n
.
{\displaystyle \sum _{n=1}^{\infty }{\frac {e^{n}}{n}}.}
Putting this into the ratio test:
L
=
lim
n
→
∞
|
a
n
+
1
a
n
|
=
lim
n
→
∞
|
e
n
+
1
n
+
1
e
n
n
|
=
e
>
1.
{\displaystyle L=\lim _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|=\lim _{n\to \infty }\left|{\frac {\frac {e^{n+1}}{n+1}}{\frac {e^{n}}{n}}}\right|=e>1.}
Thus the series diverges.
Inconclusive because L = 1[ edit ]
Consider the three series
∑
n
=
1
∞
1
,
{\displaystyle \sum _{n=1}^{\infty }1,}
∑
n
=
1
∞
1
n
2
,
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}},}
∑
n
=
1
∞
(
−
1
)
n
+
1
n
.
{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}.}
The first series (1 + 1 + 1 + 1 + ⋯ ) diverges, the second (the one central to the Basel problem ) converges absolutely and the third (the alternating harmonic series ) converges conditionally. However, the term-by-term magnitude ratios
|
a
n
+
1
a
n
|
{\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|}
of the three series are
1
,
{\displaystyle 1,}
n
2
(
n
+
1
)
2
{\displaystyle {\frac {n^{2}}{(n+1)^{2}}}}
and
n
n
+
1
{\displaystyle {\frac {n}{n+1}}}
. So, in all three, the limit
lim
n
→
∞
|
a
n
+
1
a
n
|
{\displaystyle \lim _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|}
is equal to 1. This illustrates that when L = 1, the series may converge or diverge: the ratio test is inconclusive. In such cases, more refined tests are required to determine convergence or divergence.
In this example, the ratio of adjacent terms in the blue sequence converges to L=1/2. We choose r = (L+1)/2 = 3/4. Then the blue sequence is dominated by the red sequence rk for all n ≥ 2. The red sequence converges, so the blue sequence does as well.
Below is a proof of the validity of the generalized ratio test.
Suppose that
r
=
lim inf
n
→
∞
|
a
n
+
1
a
n
|
>
1
{\displaystyle r=\liminf _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|>1}
. We also suppose that
(
a
n
)
{\displaystyle (a_{n})}
has infinite non-zero members, otherwise the series is just a finite sum hence it converges. Then there exists some
ℓ
∈
(
1
;
r
)
{\displaystyle \ell \in (1;r)}
such that there exists a natural number
n
0
≥
2
{\displaystyle n_{0}\geq 2}
satisfying
a
n
0
≠
0
{\displaystyle a_{n_{0}}\neq 0}
and
|
a
n
+
1
a
n
|
>
ℓ
{\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|>\ell }
for all
n
≥
n
0
{\displaystyle n\geq n_{0}}
, because if no such
ℓ
{\displaystyle \ell }
exists then there exists arbitrarily large
n
{\displaystyle n}
satisfying
|
a
n
+
1
a
n
|
<
ℓ
{\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|<\ell }
for every
ℓ
∈
(
1
;
r
)
{\displaystyle \ell \in (1;r)}
, then we can find a subsequence
(
a
n
k
)
k
=
1
∞
{\displaystyle \left(a_{n_{k}}\right)_{k=1}^{\infty }}
satisfying
lim sup
n
→
∞
|
a
n
k
+
1
a
n
k
|
≤
ℓ
<
r
{\displaystyle \limsup _{n\to \infty }\left|{\frac {a_{n_{k}+1}}{a_{n_{k}}}}\right|\leq \ell <r}
, but this contradicts the fact that
r
{\displaystyle r}
is the limit inferior of
|
a
n
+
1
a
n
|
{\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|}
as
n
→
∞
{\displaystyle n\to \infty }
, implying the existence of
ℓ
{\displaystyle \ell }
. Then we notice that for
n
≥
n
0
+
1
{\displaystyle n\geq n_{0}+1}
,
|
a
n
|
>
ℓ
|
a
n
−
1
|
>
ℓ
2
|
a
n
−
2
|
>
.
.
.
>
ℓ
n
−
n
0
|
a
n
0
|
{\displaystyle |a_{n}|>\ell |a_{n-1}|>\ell ^{2}|a_{n-2}|>...>\ell ^{n-n_{0}}\left|a_{n_{0}}\right|}
. Notice that
ℓ
>
1
{\displaystyle \ell >1}
so
ℓ
n
→
∞
{\displaystyle \ell ^{n}\to \infty }
as
n
→
∞
{\displaystyle n\to \infty }
and
|
a
n
0
|
>
0
{\displaystyle \left|a_{n_{0}}\right|>0}
, this implies
(
a
n
)
{\displaystyle (a_{n})}
diverges so the series
∑
n
=
1
∞
a
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}}
diverges by the n-th term test .
Now suppose
R
=
lim sup
n
→
∞
|
a
n
+
1
a
n
|
<
1
{\displaystyle R=\limsup _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|<1}
. Similar to the above case, we may find a natural number
n
1
{\displaystyle n_{1}}
and a
c
∈
(
R
;
1
)
{\displaystyle c\in (R;1)}
such that
|
a
n
|
≤
c
n
−
n
1
|
a
n
1
|
{\displaystyle |a_{n}|\leq c^{n-n_{1}}\left|a_{n_{1}}\right|}
for
n
≥
n
1
{\displaystyle n\geq n_{1}}
. Then
∑
n
=
1
∞
|
a
n
|
=
∑
k
=
1
n
1
−
1
|
a
k
|
+
∑
n
=
n
1
∞
|
a
n
|
≤
∑
k
=
1
n
1
−
1
|
a
k
|
+
∑
n
=
n
1
∞
c
n
−
n
1
|
a
n
1
|
=
∑
k
=
1
n
1
−
1
|
a
k
|
+
|
a
n
1
|
∑
n
=
0
∞
c
n
.
{\displaystyle \sum _{n=1}^{\infty }|a_{n}|=\sum _{k=1}^{n_{1}-1}|a_{k}|+\sum _{n=n_{1}}^{\infty }|a_{n}|\leq \sum _{k=1}^{n_{1}-1}|a_{k}|+\sum _{n=n_{1}}^{\infty }c^{n-n_{1}}|a_{n_{1}}|=\sum _{k=1}^{n_{1}-1}|a_{k}|+\left|a_{n_{1}}\right|\sum _{n=0}^{\infty }c^{n}.}
The series
∑
n
=
0
∞
c
n
{\displaystyle \sum _{n=0}^{\infty }c^{n}}
is the geometric series with common ratio
c
∈
(
0
;
1
)
{\displaystyle c\in (0;1)}
, hence
∑
n
=
0
∞
c
n
=
1
1
−
c
{\displaystyle \sum _{n=0}^{\infty }c^{n}={\frac {1}{1-c}}}
which is finite. The sum
∑
k
=
1
n
1
−
1
|
a
k
|
{\displaystyle \sum _{k=1}^{n_{1}-1}|a_{k}|}
is a finite sum and hence it is bounded, this implies the series
∑
n
=
1
∞
|
a
n
|
{\displaystyle \sum _{n=1}^{\infty }|a_{n}|}
converges by the monotone convergence theorem and the series
∑
n
=
1
∞
a
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}}
converges by the absolute convergence test.
When the limit
|
a
n
+
1
a
n
|
{\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|}
exists and equals to
L
{\displaystyle L}
then
r
=
R
=
L
{\displaystyle r=R=L}
, this gives the original ratio test.
Extensions for L = 1[ edit ]
As seen in the previous example, the ratio test may be inconclusive when the limit of the ratio is 1. Extensions to the ratio test, however, sometimes allow one to deal with this case.[ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [ 10] [ 11]
In all the tests below one assumes that Σa n is a sum with positive a n . These tests also may be applied to any series with a finite number of negative terms. Any such series may be written as:
∑
n
=
1
∞
a
n
=
∑
n
=
1
N
a
n
+
∑
n
=
N
+
1
∞
a
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}=\sum _{n=1}^{N}a_{n}+\sum _{n=N+1}^{\infty }a_{n}}
where aN is the highest-indexed negative term. The first expression on the right is a partial sum which will be finite, and so the convergence of the entire series will be determined by the convergence properties of the second expression on the right, which may be re-indexed to form a series of all positive terms beginning at n =1.
Each test defines a test parameter (ρn ) which specifies the behavior of that parameter needed to establish convergence or divergence. For each test, a weaker form of the test exists which will instead place restrictions upon limn->∞ ρn .
All of the tests have regions in which they fail to describe the convergence properties of Σan . In fact, no convergence test can fully describe the convergence properties of the series.[ 4] [ 10] This is because if Σan is convergent, a second convergent series Σbn can be found which converges more slowly: i.e., it has the property that limn->∞ (bn /an ) = ∞. Furthermore, if Σan is divergent, a second divergent series Σbn can be found which diverges more slowly: i.e., it has the property that limn->∞ (bn /an ) = 0. Convergence tests essentially use the comparison test on some particular family of an , and fail for sequences which converge or diverge more slowly.
De Morgan hierarchy [ edit ]
Augustus De Morgan proposed a hierarchy of ratio-type tests[ 4] [ 9]
The ratio test parameters (
ρ
n
{\displaystyle \rho _{n}}
) below all generally involve terms of the form
D
n
a
n
/
a
n
+
1
−
D
n
+
1
{\displaystyle D_{n}a_{n}/a_{n+1}-D_{n+1}}
. This term may be multiplied by
a
n
+
1
/
a
n
{\displaystyle a_{n+1}/a_{n}}
to yield
D
n
−
D
n
+
1
a
n
+
1
/
a
n
{\displaystyle D_{n}-D_{n+1}a_{n+1}/a_{n}}
. This term can replace the former term in the definition of the test parameters and the conclusions drawn will remain the same. Accordingly, there will be no distinction drawn between references which use one or the other form of the test parameter.
1. d'Alembert's ratio test[ edit ]
The first test in the De Morgan hierarchy is the ratio test as described above.
This extension is due to Joseph Ludwig Raabe . Define:
ρ
n
≡
n
(
a
n
a
n
+
1
−
1
)
{\displaystyle \rho _{n}\equiv n\left({\frac {a_{n}}{a_{n+1}}}-1\right)}
(and some extra terms, see Ali, Blackburn, Feld, Duris (none), Duris2)[clarification needed ]
The series will:[ 7] [ 10] [ 9]
Converge when there exists a c> 1 such that
ρ
n
≥
c
{\displaystyle \rho _{n}\geq c}
for all n>N .
Diverge when
ρ
n
≤
1
{\displaystyle \rho _{n}\leq 1}
for all n>N .
Otherwise, the test is inconclusive.
For the limit version,[ 12] the series will:
Converge if
ρ
=
lim
n
→
∞
ρ
n
>
1
{\displaystyle \rho =\lim _{n\to \infty }\rho _{n}>1}
(this includes the case ρ = ∞)
Diverge if
lim
n
→
∞
ρ
n
<
1
{\displaystyle \lim _{n\to \infty }\rho _{n}<1}
.
If ρ = 1, the test is inconclusive.
When the above limit does not exist, it may be possible to use limits superior and inferior.[ 4] The series will:
Converge if
lim inf
n
→
∞
ρ
n
>
1
{\displaystyle \liminf _{n\to \infty }\rho _{n}>1}
Diverge if
lim sup
n
→
∞
ρ
n
<
1
{\displaystyle \limsup _{n\rightarrow \infty }\rho _{n}<1}
Otherwise, the test is inconclusive.
Proof of Raabe's test[ edit ]
Defining
ρ
n
≡
n
(
a
n
a
n
+
1
−
1
)
{\displaystyle \rho _{n}\equiv n\left({\frac {a_{n}}{a_{n+1}}}-1\right)}
, we need not assume the limit exists; if
lim sup
ρ
n
<
1
{\displaystyle \limsup \rho _{n}<1}
, then
∑
a
n
{\displaystyle \sum a_{n}}
diverges, while if
lim inf
ρ
n
>
1
{\displaystyle \liminf \rho _{n}>1}
the sum converges.
The proof proceeds essentially by comparison with
∑
1
/
n
R
{\displaystyle \sum 1/n^{R}}
. Suppose first that
lim sup
ρ
n
<
1
{\displaystyle \limsup \rho _{n}<1}
. Of course
if
lim sup
ρ
n
<
0
{\displaystyle \limsup \rho _{n}<0}
then
a
n
+
1
≥
a
n
{\displaystyle a_{n+1}\geq a_{n}}
for large
n
{\displaystyle n}
, so the sum diverges; assume then that
0
≤
lim sup
ρ
n
<
1
{\displaystyle 0\leq \limsup \rho _{n}<1}
. There exists
R
<
1
{\displaystyle R<1}
such that
ρ
n
≤
R
{\displaystyle \rho _{n}\leq R}
for all
n
≥
N
{\displaystyle n\geq N}
, which is to say that
a
n
/
a
n
+
1
≤
(
1
+
R
n
)
≤
e
R
/
n
{\displaystyle a_{n}/a_{n+1}\leq \left(1+{\frac {R}{n}}\right)\leq e^{R/n}}
. Thus
a
n
+
1
≥
a
n
e
−
R
/
n
{\displaystyle a_{n+1}\geq a_{n}e^{-R/n}}
, which implies that
a
n
+
1
≥
a
N
e
−
R
(
1
/
N
+
⋯
+
1
/
n
)
≥
c
a
N
e
−
R
log
(
n
)
=
c
a
N
/
n
R
{\displaystyle a_{n+1}\geq a_{N}e^{-R(1/N+\dots +1/n)}\geq ca_{N}e^{-R\log(n)}=ca_{N}/n^{R}}
for
n
≥
N
{\displaystyle n\geq N}
; since
R
<
1
{\displaystyle R<1}
this shows that
∑
a
n
{\displaystyle \sum a_{n}}
diverges.
The proof of the other half is entirely analogous, with most of the inequalities simply reversed. We need a preliminary inequality to use
in place of the simple
1
+
t
<
e
t
{\displaystyle 1+t<e^{t}}
that was used above: Fix
R
{\displaystyle R}
and
N
{\displaystyle N}
. Note that
log
(
1
+
R
n
)
=
R
n
+
O
(
1
n
2
)
{\displaystyle \log \left(1+{\frac {R}{n}}\right)={\frac {R}{n}}+O\left({\frac {1}{n^{2}}}\right)}
. So
log
(
(
1
+
R
N
)
…
(
1
+
R
n
)
)
=
R
(
1
N
+
⋯
+
1
n
)
+
O
(
1
)
=
R
log
(
n
)
+
O
(
1
)
{\displaystyle \log \left(\left(1+{\frac {R}{N}}\right)\dots \left(1+{\frac {R}{n}}\right)\right)=R\left({\frac {1}{N}}+\dots +{\frac {1}{n}}\right)+O(1)=R\log(n)+O(1)}
; hence
(
1
+
R
N
)
…
(
1
+
R
n
)
≥
c
n
R
{\displaystyle \left(1+{\frac {R}{N}}\right)\dots \left(1+{\frac {R}{n}}\right)\geq cn^{R}}
.
Suppose now that
lim inf
ρ
n
>
1
{\displaystyle \liminf \rho _{n}>1}
. Arguing as in the first paragraph, using the inequality established in the previous paragraph, we see that there exists
R
>
1
{\displaystyle R>1}
such that
a
n
+
1
≤
c
a
N
n
−
R
{\displaystyle a_{n+1}\leq ca_{N}n^{-R}}
for
n
≥
N
{\displaystyle n\geq N}
; since
R
>
1
{\displaystyle R>1}
this shows that
∑
a
n
{\displaystyle \sum a_{n}}
converges.
This extension is due to Joseph Bertrand and Augustus De Morgan .
Defining:
ρ
n
≡
n
ln
n
(
a
n
a
n
+
1
−
1
)
−
ln
n
{\displaystyle \rho _{n}\equiv n\ln n\left({\frac {a_{n}}{a_{n+1}}}-1\right)-\ln n}
Bertrand's test[ 4] [ 10] asserts that the series will:
Converge when there exists a c>1 such that
ρ
n
≥
c
{\displaystyle \rho _{n}\geq c}
for all n>N .
Diverge when
ρ
n
≤
1
{\displaystyle \rho _{n}\leq 1}
for all n>N .
Otherwise, the test is inconclusive.
For the limit version, the series will:
Converge if
ρ
=
lim
n
→
∞
ρ
n
>
1
{\displaystyle \rho =\lim _{n\to \infty }\rho _{n}>1}
(this includes the case ρ = ∞)
Diverge if
lim
n
→
∞
ρ
n
<
1
{\displaystyle \lim _{n\to \infty }\rho _{n}<1}
.
If ρ = 1, the test is inconclusive.
When the above limit does not exist, it may be possible to use limits superior and inferior.[ 4] [ 9] [ 13] The series will:
Converge if
lim inf
ρ
n
>
1
{\displaystyle \liminf \rho _{n}>1}
Diverge if
lim sup
ρ
n
<
1
{\displaystyle \limsup \rho _{n}<1}
Otherwise, the test is inconclusive.
4. Extended Bertrand's test[ edit ]
This extension probably appeared at the first time by Margaret Martin in 1941.[ 14] A short proof based on Kummer's test and without technical assumptions (such as existence of the limits, for example) was provided by Vyacheslav Abramov in 2019.[ 15]
Let
K
≥
1
{\displaystyle K\geq 1}
be an integer, and let
ln
(
K
)
(
x
)
{\displaystyle \ln _{(K)}(x)}
denote the
K
{\displaystyle K}
th iterate of natural logarithm , i.e.
ln
(
1
)
(
x
)
=
ln
(
x
)
{\displaystyle \ln _{(1)}(x)=\ln(x)}
and for any
2
≤
k
≤
K
{\displaystyle 2\leq k\leq K}
,
ln
(
k
)
(
x
)
=
ln
(
k
−
1
)
(
ln
(
x
)
)
{\displaystyle \ln _{(k)}(x)=\ln _{(k-1)}(\ln(x))}
.
Suppose that the ratio
a
n
/
a
n
+
1
{\displaystyle a_{n}/a_{n+1}}
, when
n
{\displaystyle n}
is large, can be presented in the form
a
n
a
n
+
1
=
1
+
1
n
+
1
n
∑
i
=
1
K
−
1
1
∏
k
=
1
i
ln
(
k
)
(
n
)
+
ρ
n
n
∏
k
=
1
K
ln
(
k
)
(
n
)
,
K
≥
1.
{\displaystyle {\frac {a_{n}}{a_{n+1}}}=1+{\frac {1}{n}}+{\frac {1}{n}}\sum _{i=1}^{K-1}{\frac {1}{\prod _{k=1}^{i}\ln _{(k)}(n)}}+{\frac {\rho _{n}}{n\prod _{k=1}^{K}\ln _{(k)}(n)}},\quad K\geq 1.}
(The empty sum is assumed to be 0. With
K
=
1
{\displaystyle K=1}
, the test reduces to Bertrand's test.)
The value
ρ
n
{\displaystyle \rho _{n}}
can be presented explicitly in the form
ρ
n
=
n
∏
k
=
1
K
ln
(
k
)
(
n
)
(
a
n
a
n
+
1
−
1
)
−
∑
j
=
1
K
∏
k
=
1
j
ln
(
K
−
k
+
1
)
(
n
)
.
{\displaystyle \rho _{n}=n\prod _{k=1}^{K}\ln _{(k)}(n)\left({\frac {a_{n}}{a_{n+1}}}-1\right)-\sum _{j=1}^{K}\prod _{k=1}^{j}\ln _{(K-k+1)}(n).}
Extended Bertrand's test asserts that the series
Converge when there exists a
c
>
1
{\displaystyle c>1}
such that
ρ
n
≥
c
{\displaystyle \rho _{n}\geq c}
for all
n
>
N
{\displaystyle n>N}
.
Diverge when
ρ
n
≤
1
{\displaystyle \rho _{n}\leq 1}
for all
n
>
N
{\displaystyle n>N}
.
Otherwise, the test is inconclusive.
For the limit version, the series
Converge if
ρ
=
lim
n
→
∞
ρ
n
>
1
{\displaystyle \rho =\lim _{n\to \infty }\rho _{n}>1}
(this includes the case
ρ
=
∞
{\displaystyle \rho =\infty }
)
Diverge if
lim
n
→
∞
ρ
n
<
1
{\displaystyle \lim _{n\to \infty }\rho _{n}<1}
.
If
ρ
=
1
{\displaystyle \rho =1}
, the test is inconclusive.
When the above limit does not exist, it may be possible to use limits superior and inferior. The series
Converge if
lim inf
ρ
n
>
1
{\displaystyle \liminf \rho _{n}>1}
Diverge if
lim sup
ρ
n
<
1
{\displaystyle \limsup \rho _{n}<1}
Otherwise, the test is inconclusive.
For applications of Extended Bertrand's test see birth–death process .
This extension is due to Carl Friedrich Gauss .
Assuming an > 0 and r > 1 , if a bounded sequence Cn can be found such that for all n :[ 5] [ 7] [ 9] [ 10]
a
n
a
n
+
1
=
1
+
ρ
n
+
C
n
n
r
{\displaystyle {\frac {a_{n}}{a_{n+1}}}=1+{\frac {\rho }{n}}+{\frac {C_{n}}{n^{r}}}}
then the series will:
Converge if
ρ
>
1
{\displaystyle \rho >1}
Diverge if
ρ
≤
1
{\displaystyle \rho \leq 1}
This extension is due to Ernst Kummer .
Let ζn be an auxiliary sequence of positive constants. Define
ρ
n
≡
(
ζ
n
a
n
a
n
+
1
−
ζ
n
+
1
)
{\displaystyle \rho _{n}\equiv \left(\zeta _{n}{\frac {a_{n}}{a_{n+1}}}-\zeta _{n+1}\right)}
Kummer's test states that the series will:[ 5] [ 6] [ 10] [ 11]
Converge if there exists a
c
>
0
{\displaystyle c>0}
such that
ρ
n
≥
c
{\displaystyle \rho _{n}\geq c}
for all n>N. (Note this is not the same as saying
ρ
n
>
0
{\displaystyle \rho _{n}>0}
)
Diverge if
ρ
n
≤
0
{\displaystyle \rho _{n}\leq 0}
for all n>N and
∑
n
=
1
∞
1
/
ζ
n
{\displaystyle \sum _{n=1}^{\infty }1/\zeta _{n}}
diverges.
For the limit version, the series will:[ 16] [ 7] [ 9]
Converge if
lim
n
→
∞
ρ
n
>
0
{\displaystyle \lim _{n\to \infty }\rho _{n}>0}
(this includes the case ρ = ∞)
Diverge if
lim
n
→
∞
ρ
n
<
0
{\displaystyle \lim _{n\to \infty }\rho _{n}<0}
and
∑
n
=
1
∞
1
/
ζ
n
{\displaystyle \sum _{n=1}^{\infty }1/\zeta _{n}}
diverges.
Otherwise the test is inconclusive
When the above limit does not exist, it may be possible to use limits superior and inferior.[ 4] The series will
Converge if
lim inf
n
→
∞
ρ
n
>
0
{\displaystyle \liminf _{n\to \infty }\rho _{n}>0}
Diverge if
lim sup
n
→
∞
ρ
n
<
0
{\displaystyle \limsup _{n\to \infty }\rho _{n}<0}
and
∑
1
/
ζ
n
{\displaystyle \sum 1/\zeta _{n}}
diverges.
All of the tests in De Morgan's hierarchy except Gauss's test can easily be seen as special cases of Kummer's test:[ 4]
For the ratio test, let ζn =1. Then:
ρ
Kummer
=
(
a
n
a
n
+
1
−
1
)
=
1
/
ρ
Ratio
−
1
{\displaystyle \rho _{\text{Kummer}}=\left({\frac {a_{n}}{a_{n+1}}}-1\right)=1/\rho _{\text{Ratio}}-1}
For Raabe's test, let ζn =n. Then:
ρ
Kummer
=
(
n
a
n
a
n
+
1
−
(
n
+
1
)
)
=
ρ
Raabe
−
1
{\displaystyle \rho _{\text{Kummer}}=\left(n{\frac {a_{n}}{a_{n+1}}}-(n+1)\right)=\rho _{\text{Raabe}}-1}
For Bertrand's test, let ζn =n ln(n). Then:
ρ
Kummer
=
n
ln
(
n
)
(
a
n
a
n
+
1
)
−
(
n
+
1
)
ln
(
n
+
1
)
{\displaystyle \rho _{\text{Kummer}}=n\ln(n)\left({\frac {a_{n}}{a_{n+1}}}\right)-(n+1)\ln(n+1)}
Using
ln
(
n
+
1
)
=
ln
(
n
)
+
ln
(
1
+
1
/
n
)
{\displaystyle \ln(n+1)=\ln(n)+\ln(1+1/n)}
and approximating
ln
(
1
+
1
/
n
)
→
1
/
n
{\displaystyle \ln(1+1/n)\rightarrow 1/n}
for large n , which is negligible compared to the other terms,
ρ
Kummer
{\displaystyle \rho _{\text{Kummer}}}
may be written:
ρ
Kummer
=
n
ln
(
n
)
(
a
n
a
n
+
1
−
1
)
−
ln
(
n
)
−
1
=
ρ
Bertrand
−
1
{\displaystyle \rho _{\text{Kummer}}=n\ln(n)\left({\frac {a_{n}}{a_{n+1}}}-1\right)-\ln(n)-1=\rho _{\text{Bertrand}}-1}
For Extended Bertrand's test, let
ζ
n
=
n
∏
k
=
1
K
ln
(
k
)
(
n
)
.
{\displaystyle \zeta _{n}=n\prod _{k=1}^{K}\ln _{(k)}(n).}
From the Taylor series expansion for large
n
{\displaystyle n}
we arrive at the approximation
ln
(
k
)
(
n
+
1
)
=
ln
(
k
)
(
n
)
+
1
n
∏
j
=
1
k
−
1
ln
(
j
)
(
n
)
+
O
(
1
n
2
)
,
{\displaystyle \ln _{(k)}(n+1)=\ln _{(k)}(n)+{\frac {1}{n\prod _{j=1}^{k-1}\ln _{(j)}(n)}}+O\left({\frac {1}{n^{2}}}\right),}
where the empty product is assumed to be 1. Then,
ρ
Kummer
=
n
∏
k
=
1
K
ln
(
k
)
(
n
)
a
n
a
n
+
1
−
(
n
+
1
)
[
∏
k
=
1
K
(
ln
(
k
)
(
n
)
+
1
n
∏
j
=
1
k
−
1
ln
(
j
)
(
n
)
)
]
+
o
(
1
)
=
n
∏
k
=
1
K
ln
(
k
)
(
n
)
(
a
n
a
n
+
1
−
1
)
−
∑
j
=
1
K
∏
k
=
1
j
ln
(
K
−
k
+
1
)
(
n
)
−
1
+
o
(
1
)
.
{\displaystyle \rho _{\text{Kummer}}=n\prod _{k=1}^{K}\ln _{(k)}(n){\frac {a_{n}}{a_{n+1}}}-(n+1)\left[\prod _{k=1}^{K}\left(\ln _{(k)}(n)+{\frac {1}{n\prod _{j=1}^{k-1}\ln _{(j)}(n)}}\right)\right]+o(1)=n\prod _{k=1}^{K}\ln _{(k)}(n)\left({\frac {a_{n}}{a_{n+1}}}-1\right)-\sum _{j=1}^{K}\prod _{k=1}^{j}\ln _{(K-k+1)}(n)-1+o(1).}
Hence,
ρ
Kummer
=
ρ
Extended Bertrand
−
1.
{\displaystyle \rho _{\text{Kummer}}=\rho _{\text{Extended Bertrand}}-1.}
Note that for these four tests, the higher they are in the De Morgan hierarchy, the more slowly the
1
/
ζ
n
{\displaystyle 1/\zeta _{n}}
series diverges.
Proof of Kummer's test[ edit ]
If
ρ
n
>
0
{\displaystyle \rho _{n}>0}
then fix a positive number
0
<
δ
<
ρ
n
{\displaystyle 0<\delta <\rho _{n}}
. There exists
a natural number
N
{\displaystyle N}
such that for every
n
>
N
,
{\displaystyle n>N,}
δ
≤
ζ
n
a
n
a
n
+
1
−
ζ
n
+
1
.
{\displaystyle \delta \leq \zeta _{n}{\frac {a_{n}}{a_{n+1}}}-\zeta _{n+1}.}
Since
a
n
+
1
>
0
{\displaystyle a_{n+1}>0}
, for every
n
>
N
,
{\displaystyle n>N,}
0
≤
δ
a
n
+
1
≤
ζ
n
a
n
−
ζ
n
+
1
a
n
+
1
.
{\displaystyle 0\leq \delta a_{n+1}\leq \zeta _{n}a_{n}-\zeta _{n+1}a_{n+1}.}
In particular
ζ
n
+
1
a
n
+
1
≤
ζ
n
a
n
{\displaystyle \zeta _{n+1}a_{n+1}\leq \zeta _{n}a_{n}}
for all
n
≥
N
{\displaystyle n\geq N}
which means that starting from the index
N
{\displaystyle N}
the sequence
ζ
n
a
n
>
0
{\displaystyle \zeta _{n}a_{n}>0}
is monotonically decreasing and
positive which in particular implies that it is bounded below by 0. Therefore, the limit
lim
n
→
∞
ζ
n
a
n
=
L
{\displaystyle \lim _{n\to \infty }\zeta _{n}a_{n}=L}
exists.
This implies that the positive telescoping series
∑
n
=
1
∞
(
ζ
n
a
n
−
ζ
n
+
1
a
n
+
1
)
{\displaystyle \sum _{n=1}^{\infty }\left(\zeta _{n}a_{n}-\zeta _{n+1}a_{n+1}\right)}
is convergent,
and since for all
n
>
N
,
{\displaystyle n>N,}
δ
a
n
+
1
≤
ζ
n
a
n
−
ζ
n
+
1
a
n
+
1
{\displaystyle \delta a_{n+1}\leq \zeta _{n}a_{n}-\zeta _{n+1}a_{n+1}}
by the direct comparison test for positive series, the series
∑
n
=
1
∞
δ
a
n
+
1
{\displaystyle \sum _{n=1}^{\infty }\delta a_{n+1}}
is convergent.
On the other hand, if
ρ
<
0
{\displaystyle \rho <0}
, then there is an N such that
ζ
n
a
n
{\displaystyle \zeta _{n}a_{n}}
is increasing for
n
>
N
{\displaystyle n>N}
. In particular, there exists an
ϵ
>
0
{\displaystyle \epsilon >0}
for which
ζ
n
a
n
>
ϵ
{\displaystyle \zeta _{n}a_{n}>\epsilon }
for all
n
>
N
{\displaystyle n>N}
, and so
∑
n
a
n
=
∑
n
a
n
ζ
n
ζ
n
{\displaystyle \sum _{n}a_{n}=\sum _{n}{\frac {a_{n}\zeta _{n}}{\zeta _{n}}}}
diverges by comparison with
∑
n
ϵ
ζ
n
{\displaystyle \sum _{n}{\frac {\epsilon }{\zeta _{n}}}}
.
Tong's modification of Kummer's test[ edit ]
A new version of Kummer's test was established by Tong.[ 6] See also [ 8]
[ 11] [ 17]
for further discussions and new proofs. The provided modification of Kummer's theorem characterizes
all positive series, and the convergence or divergence can be formulated in the form of two necessary and sufficient conditions, one for convergence and another for divergence.
Series
∑
n
=
1
∞
a
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}}
converges if and only if there exists a positive sequence
ζ
n
{\displaystyle \zeta _{n}}
,
n
=
1
,
2
,
…
{\displaystyle n=1,2,\dots }
, such that
ζ
n
a
n
a
n
+
1
−
ζ
n
+
1
≥
c
>
0.
{\displaystyle \zeta _{n}{\frac {a_{n}}{a_{n+1}}}-\zeta _{n+1}\geq c>0.}
Series
∑
n
=
1
∞
a
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}}
diverges if and only if there exists a positive sequence
ζ
n
{\displaystyle \zeta _{n}}
,
n
=
1
,
2
,
…
{\displaystyle n=1,2,\dots }
, such that
ζ
n
a
n
a
n
+
1
−
ζ
n
+
1
≤
0
,
{\displaystyle \zeta _{n}{\frac {a_{n}}{a_{n+1}}}-\zeta _{n+1}\leq 0,}
and
∑
n
=
1
∞
1
ζ
n
=
∞
.
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{\zeta _{n}}}=\infty .}
The first of these statements can be simplified as follows: [ 18]
Series
∑
n
=
1
∞
a
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}}
converges if and only if there exists a positive sequence
ζ
n
{\displaystyle \zeta _{n}}
,
n
=
1
,
2
,
…
{\displaystyle n=1,2,\dots }
, such that
ζ
n
a
n
a
n
+
1
−
ζ
n
+
1
=
1.
{\displaystyle \zeta _{n}{\frac {a_{n}}{a_{n+1}}}-\zeta _{n+1}=1.}
The second statement can be simplified similarly:
Series
∑
n
=
1
∞
a
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}}
diverges if and only if there exists a positive sequence
ζ
n
{\displaystyle \zeta _{n}}
,
n
=
1
,
2
,
…
{\displaystyle n=1,2,\dots }
, such that
ζ
n
a
n
a
n
+
1
−
ζ
n
+
1
=
0
,
{\displaystyle \zeta _{n}{\frac {a_{n}}{a_{n+1}}}-\zeta _{n+1}=0,}
and
∑
n
=
1
∞
1
ζ
n
=
∞
.
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{\zeta _{n}}}=\infty .}
However, it becomes useless, since the condition
∑
n
=
1
∞
1
ζ
n
=
∞
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{\zeta _{n}}}=\infty }
in this case reduces to the original claim
∑
n
=
1
∞
a
n
=
∞
.
{\displaystyle \sum _{n=1}^{\infty }a_{n}=\infty .}
Another ratio test that can be set in the framework of Kummer's theorem was presented by Orrin Frink [ 19] 1948.
Suppose
a
n
{\displaystyle a_{n}}
is a sequence in
C
∖
{
0
}
{\displaystyle \mathbb {C} \setminus \{0\}}
,
If
lim sup
n
→
∞
(
|
a
n
+
1
|
|
a
n
|
)
n
<
1
e
{\displaystyle \limsup _{n\rightarrow \infty }{\Big (}{\frac {|a_{n+1}|}{|a_{n}|}}{\Big )}^{n}<{\frac {1}{e}}}
, then the series
∑
n
a
n
{\displaystyle \sum _{n}a_{n}}
converges absolutely.
If there is
N
∈
N
{\displaystyle N\in \mathbb {N} }
such that
(
|
a
n
+
1
|
|
a
n
|
)
n
≥
1
e
{\displaystyle {\Big (}{\frac {|a_{n+1}|}{|a_{n}|}}{\Big )}^{n}\geq {\frac {1}{e}}}
for all
n
≥
N
{\displaystyle n\geq N}
, then
∑
n
|
a
n
|
{\displaystyle \sum _{n}|a_{n}|}
diverges.
This result reduces to a comparison of
∑
n
|
a
n
|
{\displaystyle \sum _{n}|a_{n}|}
with a power series
∑
n
n
−
p
{\displaystyle \sum _{n}n^{-p}}
, and can be seen to be related to Raabe's test.[ 20]
Ali's second ratio test[ edit ]
A more refined ratio test is the second ratio test:[ 7] [ 9]
For
a
n
>
0
{\displaystyle a_{n}>0}
define:
L
0
≡
lim
n
→
∞
a
2
n
a
n
{\displaystyle L_{0}\equiv \lim _{n\rightarrow \infty }{\frac {a_{2n}}{a_{n}}}}
L
1
≡
lim
n
→
∞
a
2
n
+
1
a
n
{\displaystyle L_{1}\equiv \lim _{n\rightarrow \infty }{\frac {a_{2n+1}}{a_{n}}}}
L
≡
max
(
L
0
,
L
1
)
{\displaystyle L\equiv \max(L_{0},L_{1})}
By the second ratio test, the series will:
Converge if
L
<
1
2
{\displaystyle L<{\frac {1}{2}}}
Diverge if
L
>
1
2
{\displaystyle L>{\frac {1}{2}}}
If
L
=
1
2
{\displaystyle L={\frac {1}{2}}}
then the test is inconclusive.
If the above limits do not exist, it may be possible to use the limits superior and inferior. Define:
L
0
≡
lim sup
n
→
∞
a
2
n
a
n
{\displaystyle L_{0}\equiv \limsup _{n\rightarrow \infty }{\frac {a_{2n}}{a_{n}}}}
L
1
≡
lim sup
n
→
∞
a
2
n
+
1
a
n
{\displaystyle L_{1}\equiv \limsup _{n\rightarrow \infty }{\frac {a_{2n+1}}{a_{n}}}}
ℓ
0
≡
lim inf
n
→
∞
a
2
n
a
n
{\displaystyle \ell _{0}\equiv \liminf _{n\rightarrow \infty }{\frac {a_{2n}}{a_{n}}}}
ℓ
1
≡
lim inf
n
→
∞
a
2
n
+
1
a
n
{\displaystyle \ell _{1}\equiv \liminf _{n\rightarrow \infty }{\frac {a_{2n+1}}{a_{n}}}}
L
≡
max
(
L
0
,
L
1
)
{\displaystyle L\equiv \max(L_{0},L_{1})}
ℓ
≡
min
(
ℓ
0
,
ℓ
1
)
{\displaystyle \ell \equiv \min(\ell _{0},\ell _{1})}
Then the series will:
Converge if
L
<
1
2
{\displaystyle L<{\frac {1}{2}}}
Diverge if
ℓ
>
1
2
{\displaystyle \ell >{\frac {1}{2}}}
If
ℓ
≤
1
2
≤
L
{\displaystyle \ell \leq {\frac {1}{2}}\leq L}
then the test is inconclusive.
Ali's m th ratio test[ edit ]
This test is a direct extension of the second ratio test.[ 7] [ 9] For
0
≤
k
≤
m
−
1
,
{\displaystyle 0\leq k\leq m-1,}
and positive
a
n
{\displaystyle a_{n}}
define:
L
k
≡
lim
n
→
∞
a
m
n
+
k
a
n
{\displaystyle L_{k}\equiv \lim _{n\rightarrow \infty }{\frac {a_{mn+k}}{a_{n}}}}
L
≡
max
(
L
0
,
L
1
,
…
,
L
m
−
1
)
{\displaystyle L\equiv \max(L_{0},L_{1},\ldots ,L_{m-1})}
By the
m
{\displaystyle m}
th ratio test, the series will:
Converge if
L
<
1
m
{\displaystyle L<{\frac {1}{m}}}
Diverge if
L
>
1
m
{\displaystyle L>{\frac {1}{m}}}
If
L
=
1
m
{\displaystyle L={\frac {1}{m}}}
then the test is inconclusive.
If the above limits do not exist, it may be possible to use the limits superior and inferior. For
0
≤
k
≤
m
−
1
{\displaystyle 0\leq k\leq m-1}
define:
L
k
≡
lim sup
n
→
∞
a
m
n
+
k
a
n
{\displaystyle L_{k}\equiv \limsup _{n\rightarrow \infty }{\frac {a_{mn+k}}{a_{n}}}}
ℓ
k
≡
lim inf
n
→
∞
a
m
n
+
k
a
n
{\displaystyle \ell _{k}\equiv \liminf _{n\rightarrow \infty }{\frac {a_{mn+k}}{a_{n}}}}
L
≡
max
(
L
0
,
L
1
,
…
,
L
m
−
1
)
{\displaystyle L\equiv \max(L_{0},L_{1},\ldots ,L_{m-1})}
ℓ
≡
min
(
ℓ
0
,
ℓ
1
,
…
,
ℓ
m
−
1
)
{\displaystyle \ell \equiv \min(\ell _{0},\ell _{1},\ldots ,\ell _{m-1})}
Then the series will:
Converge if
L
<
1
m
{\displaystyle L<{\frac {1}{m}}}
Diverge if
ℓ
>
1
m
{\displaystyle \ell >{\frac {1}{m}}}
If
ℓ
≤
1
m
≤
L
{\displaystyle \ell \leq {\frac {1}{m}}\leq L}
, then the test is inconclusive.
Ali--Deutsche Cohen φ-ratio test[ edit ]
This test is an extension of the
m
{\displaystyle m}
th ratio test.[ 21]
Assume that the sequence
a
n
{\displaystyle a_{n}}
is a positive decreasing sequence.
Let
φ
:
Z
+
→
Z
+
{\displaystyle \varphi :\mathbb {Z} ^{+}\to \mathbb {Z} ^{+}}
be such that
lim
n
→
∞
n
φ
(
n
)
{\displaystyle \lim _{n\to \infty }{\frac {n}{\varphi (n)}}}
exists. Denote
α
=
lim
n
→
∞
n
φ
(
n
)
{\displaystyle \alpha =\lim _{n\to \infty }{\frac {n}{\varphi (n)}}}
, and assume
0
<
α
<
1
{\displaystyle 0<\alpha <1}
.
Assume also that
lim
n
→
∞
a
φ
(
n
)
a
n
=
L
.
{\displaystyle \lim _{n\to \infty }{\frac {a_{\varphi (n)}}{a_{n}}}=L.}
Then the series will:
Converge if
L
<
α
{\displaystyle L<\alpha }
Diverge if
L
>
α
{\displaystyle L>\alpha }
If
L
=
α
{\displaystyle L=\alpha }
, then the test is inconclusive.
^ Weisstein, Eric W. "Ratio Test" . MathWorld .
^ Rudin 1976 , §3.34
^ Apostol 1974 , §8.14
^ a b c d e f g h Bromwich, T. J. I'A (1908). An Introduction To The Theory of Infinite Series . Merchant Books.
^ a b c Knopp, Konrad (1954). Theory and Application of Infinite Series . London: Blackie & Son Ltd.
^ a b c
Tong, Jingcheng (May 1994). "Kummer's Test Gives Characterizations for Convergence or Divergence of all Positive Series". The American Mathematical Monthly . 101 (5): 450– 452. doi :10.2307/2974907 . JSTOR 2974907 .
^ a b c d e f
Ali, Sayel A. (2008). "The mth Ratio Test: New Convergence Test for Series" . The American Mathematical Monthly . 115 (6): 514– 524. doi :10.1080/00029890.2008.11920558 . S2CID 16336333 . Retrieved 4 September 2024 .
^ a b
Samelson, Hans (November 1995). "More on Kummer's Test". The American Mathematical Monthly . 102 (9): 817– 818. doi :10.2307/2974510 . JSTOR 2974510 .
^ a b c d e f g h Blackburn, Kyle (4 May 2012). "The mth Ratio Convergence Test and Other Unconventional Convergence Tests" (PDF) . University of Washington College of Arts and Sciences. Retrieved 27 November 2018 .
^ a b c d e f Ďuriš, František (2009). Infinite series: Convergence tests (Bachelor's thesis). Katedra Informatiky, Fakulta Matematiky, Fyziky a Informatiky, Univerzita Komenského, Bratislava. Retrieved 28 November 2018 .
^ a b c Ďuriš, František (2 February 2018). "On Kummer's test of convergence and its relation to basic comparison tests". arXiv :1612.05167 [math.HO ].
^ Weisstein, Eric W. "Raabe's Test" . MathWorld .
^ Weisstein, Eric W. "Bertrand's Test" . MathWorld .
^ Martin, Margaret (1941). "A sequence of limit tests for the convergence of series" (PDF) . Bulletin of the American Mathematical Society . 47 (6): 452– 457. doi :10.1090/S0002-9904-1941-07477-X .
^ Abramov, Vyacheslav M. (May 2020). "Extension of the Bertrand–De Morgan test and its application". The American Mathematical Monthly . 127 (5): 444– 448. arXiv :1901.05843 . doi :10.1080/00029890.2020.1722551 . S2CID 199552015 .
^ Weisstein, Eric W. "Kummer's Test" . MathWorld .
^ Abramov, Vyacheslav, M. (21 June 2021). "A simple proof of Tong's theorem". arXiv :2106.13808 [math.HO ]. {{cite arXiv }}
: CS1 maint: multiple names: authors list (link )
^
Abramov, Vyacheslav M. (May 2022). "Evaluating the sum of convergent positive series" (PDF) . Publications de l'Institut Mathématique . Nouvelle Série. 111 (125): 41– 53. doi :10.2298/PIM2225041A . S2CID 237499616 .
^ Frink, Orrin (October 1948). "A ratio test" . Bulletin of the American Mathematical Society . 54 (10): 953– 953.
^ Stark, Marceli (1949). "On the ratio test of Frink". Colloquium Mathematicum . 2 (1): 46– 47.
^ Ali, Sayel; Cohen, Marion Deutsche (2012). "phi-ratio tests" . Elemente der Mathematik . 67 (4): 164– 168. doi :10.4171/EM/206 .
d'Alembert, J. (1768), Opuscules , vol. V, pp. 171– 183 .
Apostol, Tom M. (1974), Mathematical analysis (2nd ed.), Addison-Wesley , ISBN 978-0-201-00288-1 : §8.14.
Knopp, Konrad (1956), Infinite Sequences and Series , New York: Dover Publications, Bibcode :1956iss..book.....K , ISBN 978-0-486-60153-3 : §3.3, 5.4.
Rudin, Walter (1976), Principles of Mathematical Analysis (3rd ed.), New York: McGraw-Hill, Inc., ISBN 978-0-07-054235-8 : §3.34.
"Bertrand criterion" , Encyclopedia of Mathematics , EMS Press , 2001 [1994]
"Gauss criterion" , Encyclopedia of Mathematics , EMS Press , 2001 [1994]
"Kummer criterion" , Encyclopedia of Mathematics , EMS Press , 2001 [1994]
Watson, G. N.; Whittaker, E. T. (1963), A Course in Modern Analysis (4th ed.), Cambridge University Press, ISBN 978-0-521-58807-2 : §2.36, 2.37.